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Open restricted queueing networks give rise to the phenomenon of deadlock, whereby some customers 

may be unable to ever leave a server due to mutual blocking. This paper explores deadlock in queueing 

networks with limited queueing capacity, presents a method of detecting deadlock in discrete event sim- 

ulations, and builds Markov chain models of these deadlocking networks. The three networks for which 

Markov models are given include single and multi-server networks for one and two node systems. The 

expected times to deadlock of these models are compared to results obtained using a simulation of the 

stochastic process, together with the developed deadlock detection method. This paper aims to be of 

value to simulation modellers of queues. 
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. Introduction 

The study and modelling of queueing networks with blocking

s an important tool in many aspects of operational research, both

nalytically and through simulation. These models have applica-

ions in many varied settings such as healthcare, supply chains,

anufacturing and communications systems. However, these types

f models have their limitations, due to their potential to be-

ome permanently blocked in deadlock, or a deadly embrace of

esources. These deadlocks can be real and observed in reality, in

hich case accurate modelling of deadlock is needed; or they can

e a symptom of a model unable to capture certain behaviours.

his may occur in models where deadlock situations are easily ad-

usted in reality. In this case, such as by swapping two customers,

 good understanding of deadlock is needed in order to model the

djusted reality. 

Queueing networks are described as open if customers can en-

er and leave the system from the exterior. Restricted networks are

hose where at least one service centre has limited queueing space

r capacity before it. Deadlock is caused by blocking. This paper

onsiders Type I blocking: after service a customer will be blocked

rom joining a queue at another node if that node’s queueing ca-

acity is full. While blocked, that customer remains with its server

ntil space becomes available at its destination. During this time

hat server is unavailable to begin another customer’s service. 

For the purposes of this paper, deadlock is defined as follows. 
∗ Corresponding author. 
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efinition 1. When there is a subset of blocked customers who

re blocked directly or indirectly by customers in that subset only,

hen the system is said to be in deadlock. 

This implies that a system is in deadlock when at least one

ervice station permanently ceases to begin or finish any more

ervices, due to circular blocking. Fig. 1 shows an open two node

estricted queueing network in deadlock. The customer at the top

erver is blocked from entering the bottom node as there is a full

ueue, and similarly the customer at the bottom server is blocked

rom entering the top node as there is a full queue. It is clear that

y following the rules of blocking defined above, no more natu-

al movement can happen. This system is in deadlock as there is

 subset of blocked customers (the customer with server A 1 and

he customer with server B 1 ) who are only being blocked by each

ther. 

This paper is concerned with open restricted queueing net-

orks that experience Type I blocking. Exponential service times

nd Poisson arrivals are assumed. First in first out, or FIFO service

iscipline is also assumed. Throughout the paper service centres

ill be referred to as nodes, and for the i th node of a queueing

etwork the following notation is used: 

• �i denotes the external arrival rate. 
• μi denotes the service rate. 
• c i denotes the number of parallel servers. 
• n i denotes the queueing capacity. 
• r ij denotes the routing probability from node i to node j upon

completion of service at node i . 

The main contribution of this work to the literature is a for-

al, rigorous, and analytical study of deadlock in queueing pro-

esses, which has never been done before. Methodologies for the
 under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Example of an open two node restricted queueing network in deadlock. 

Fig. 2. Diagram of patient flows at an interface between secondary care services at 

a hospital and community care services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t  

t  

c  

a  

p  

c

 

h  

e  

t  

i  

p

 

t  

s  

a  

p  

c  

a  

b  

r  

f  

t  

m

 

w  

t  

d  

b

3

 

d  

B  

2  

p  

K  

r  

H  

w  

e  

e  

t  

1

 

c  

b  

b  

c  

i  

g  

p  

t  

i  

t  

n  

w  

d

 

d  

t  

t  

E  

t

detection of deadlock as well as Markovian models of deadlock are

presented. In particular, this paper looks at detecting when dead-

lock occurs, and the time until a deadlock occurs from an empty

system. First, a method for detecting deadlock in simulations of

queueing networks is presented. Then, Markov models of simple

deadlocking queueing networks are built. This not only contributes

a novel theoretic advancement of the study of queueing networks,

but also has the potential for impact in real world queueing net-

works, as discussed in Section 2 . 

The remainder of this paper is structured as follows:

Section 2 gives a motivating example to put the work in context.

Section 3 gives an overview of existing literature on the subject.

Section 4 presents a method of detecting deadlock in simulations

of queueing networks. Section 5 presents Markov models of three

deadlocking queueing networks, finds their expected time to dead-

lock, and compares these with results obtained through simulation

models. 

2. A motivating example 

Here we present a motivating example of a healthcare system.

In this example deadlock may be easily resolved in reality, however

analytical stochastic models and simulations may be restricted by

deadlock. Therefore an understanding of this phenomenon, and an

ability to overcome this effect in discrete event simulations, is es-

sential for modelling this system. 

Consider the interface between secondary care services at a

hospital and community care services. Patients can be admitted

to hospital via a variety of routes (e.g. through emergency ser-

vices, or outpatients), and via referral from community care ser-

vices. Patients can begin receiving community care packages after

referral from GP, or via referral from the hospital. Considering only

the hospital and community care services as nodes, this system is

shown in Fig. 2 . 

If there are no free hospital beds, then patients being referred

from community care services will be sustained by community

care workers until beds become available. If there are no commu-

nity care packages available, then patients requiring packages but

unfit to return home after a hospital stay will remain in hospi-

tal, blocking beds until a community care package becomes avail-
ble. Type I blocking occurs here, as patients and staff do not know

he future capacity of their next destination prior to service. This

ype of bed blocking is well known ( Manzano-Santaella, 2010 ). This

auses problems for patients as they are being cared for in an in-

ppropriate setting for their condition, and also for the health care

roviders as secondary care may be more expensive than primary

are, and resolution of this causes administrative stress. 

In this model there is a non-zero probability of everyone at the

ospital blocking beds waiting for community care packages, and

veryone at community care being sustained waiting for beds at

he hospital. Thus the model will exhibit deadlock. In reality, there

s communication between these services and patients can swap

laces. This ensures no deadlock. 

Restricted feedback loops that exhibit mutual blocking such as

his one have been observed in real healthcare systems, as de-

cribed in a case study in Osorio and Bierlaire (2009) . However the

uthors here state that this type of blocking “may be irrelevant in

ractice given that the swapping of patients can be identified and

arried out easily”. In Koizumi, Kuno, and Smith (2005) a health

nd community care system is described as having restricted feed-

ack loops. However due to ease of modelling, and to avoid the

estrictions caused by deadlock, these feedback loops are omitted

rom the model. This emphasises the discrepancies that occur be-

ween common modelling techniques and reality in systems that

ay reach deadlock. 

An understanding of how deadlock behaves in these models

ill aid the modelling process. A deadlock detection method for

he simulation model will be invaluable in modelling realistic

eadlock resolution methods, thus ensuring correct models can be

uilt of systems like this with circular blocking. 

. Literature review 

Restricted queueing networks that exhibit blocking are well

iscussed in the literature, both exact ( Avi-Itzhak & Yadin, 1965;

aber, 2008; Gordon & Newell, 1967; Hunt, 1956; Koizumi et al.,

005; Latouche & Neuts, 1980; Perros, Nilsson, & Liu, 1988 ) and ap-

roximate methods ( Allon, Deo, & Lin, 2013; Dallery & Frein, 1993;

orporaal, Ridder, Kloprogge, & Dekker, 20 0 0; Onvural, 1990; Oso-

io & Bierlaire, 2009; Perros et al., 1988; Takahashi, Miyahara, &

asegawa, 1980 ). Discussions on restricted queueing networks

ith feedback loops, that may exhibit deadlock, are sparse how-

ver. In fact the problem of deadlock in queueing networks has

ither been ignored, not studied, or assumed resolved in much of

he literature ( Onvural, 1990; Osorio & Bierlaire, 2009; Perros et al.,

988 ). 

Central to the study of deadlock in queueing networks is the

oncept of blocking. In Onvural and Perros (1986) three types of

locking are described. Type I blocking occurs when a customer is

locked after completing service, and remains with the server until

apacity at their destination node becomes available. Type II block-

ng occurs when a customer declares their destination before be-

inning service, and is only granted service if there is available ca-

acity at their destination node. In Type III blocking, instead of get-

ing blocked, a customer is required to repeat their service if there

s no capacity at their destination. This type of blocking comes in

wo forms, fixed destination where the customer’s destination does

ot change at each repetition of service, and random destination,

here the customer’s destination is re-sampled from a probability

istribution after each repetition. 

There has been a body of research around deadlock which

oes not consider the underlying stochastic structure of the sys-

em ( Coffman & Elphick, 1971; Reveliotis, 2015a; 2015b ). This

ype of deadlock, also referred to as deadly embraces ( Coffman &

lphick, 1971 ), can potentially occur under the following condi-

ions: 
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• Mutual exclusion: Tasks have exclusive control over resources. 
• Wait for: Tasks do not release resources while waiting for other

resources. 
• No pre-emption: Resources cannot be removed until they have

been used to completion. 
• Circular wait: A circular chain of tasks exists, where each task

requests a resource from another task in the chain. 

In open restricted queueing networks the mutual exclusion con-

ition is satisfied as customers cannot share servers; the wait for

ondition is satisfied due to the rules of Type I blocking; the

o pre-emption condition is satisfied in networks that have no

r non-pre-emptive priority (this paper only considers networks

ith no priority); and the circular wait condition is satisfied if the

ueueing network contains a cycle where all nodes have limited

ueueing capacity. 

Allowing a system to reach deadlock can be problematic

n cases where automated systems cannot continue operations,

r where simulations cannot accurately model reality. In gen-

ral there are three strategies for dealing with the problem of

eadlock ( Elmagarmid, 1986; Kawadkar, Prasad, & Dwivedi, 2014;

enkatesh & Smith, 2005; Vis, 2006 ): 

• Avoidance, in which decisions are made as time unfolds to

avoid reaching deadlock. 
• Prevention, in which the system is designed such that in cannot

possibly deadlock. 
• Detection and recovery. 

Note that ( Holt, 1972 ) lists the three strategies as prevention,

etection and crashing, which is equivalent to having no deadlock

trategy. Allowing the system to crash now and again may be more

conomical in some systems where deadlocks do not occur often

nough to justify the investment and effort of implementing an

voidance/resolution strategy. 

Prevention and avoidance strategies have been used exten-

ively in an area known as Discrete Event Systems ( Reveliotis,

015a; 2015b ). A number techniques and methods have been

sed to implement deadlock avoidance ( Belik, 1990; Dijkstra, 1982;

zpeleta, Tricas, Garca-Valls, & Colom, 2002; Kawadkar et al., 2014;

archetti & Munier-Kordon, 2009; Vis, 2006; Viswanadham, Nara-

ari, & Johnson, 1990 ). These techniques generally determine when

esources cannot be allocated as that allocation would lead to

eadlock. In Florian, Mahut, and Tremblay (2008) a priority based

eadlock avoidance algorithm is implemented in a traffic simula-

ion model. The purpose of the avoidance scheme here is not to

eflect deadlock avoidance in reality, but to avoid deadlocks that

ill occur in the simulation due to missing information or incom-

lete models. 

The literature has discussed deadlock prevention in closed

ueueing networks under Type I blocking ( Kundu & Akyildiz, 1989;

iebeherr & Akyildiz, 1995; Onvural, 1990; Schmidt & Jackman,

0 0 0 ). These have involved determining the minimum queueing

pace assignment that prevents deadlock for a given population

ize, or turning customers away if certain nodes are full. For sim-

lation modelling however, prevention and avoidance techniques

ay not be appropriate as they can potentially inhibit realism in

he simulation by taking actions that do not occur in the system

eing modelled ( Venkatesh, Smith, Deuermeyer, & Curry, 1998 ). 

A popular method of detecting general deadlock is the use of

ait-for graphs, state-graphs and other variants ( Cheng, 1990; Cho,

umaran, & Wysk, 1995; Coffman & Elphick, 1971; Deuermeyer,

urry, Duchowski, & Venkatesh, 1997; Elmagarmid, 1986; Holt,

972; Venkatesh & Smith, 20 03; 20 05; Venkatesh et al., 1998 ).

hese wait-for graphs, keep track of all circular wait relations be-

ween tasks. In Coffman and Elphick (1971) dynamic state-graphs

re defined with resources as vertices and requests as edges. For
cenarios where there is only one type of each resource, deadlock

rises if and only if the state-graph contains a cycle. In Cho et al.

1995) ‘simple bounded circuits’ are defined by giving the vertices

nd edges of the state graph labels in relation to a reference node.

he existence of these circuits within the state graph indicates if

he system is in deadlock. A strategy of this type is developed in

his paper to detect deadlock in general queueing systems. 

Bipartite entity-resource graphs are used in Holt (1972) ,

euermeyer et al. (1997) and Venkatesh and Smith (2003) to

etect deadlock in systems with both consumable and reusable

esources. Two different types of deadlock are detected, tran-

ient deadlock and permanent deadlock. A deadlock resolution

rocedure is proposed that attempts to break cycles in the

ntity-resource graph. This work is furthered in Venkatesh et al.

1998) where deadlock is detected and resolved for situations

here entities may request more than one resource. 

Deadlock detection and recovery in closed queueing networks

hrough swapping customers is assumed in Perros et al. (1988) ,

ith zero transition time assumed between deadlocked states and

he corresponding resolved state. Time to resolve deadlock may not

e negligible in reality. Deadlock detection and recovery is listed as

ne of the two possible solutions for handling deadlock in queue-

ng networks in Akyildiz (1989) , although there is no further dis-

ussion. 

Note that a number of deadlock types are defined in Venkatesh

t al. (1998) . The terminology of that paper differs greatly to that

sed here. Notably the concept described by their term ‘Transient

eadlock’ is not considered a deadlock situation at all in this paper

ccording to Definition 1 . 

. Deadlock detection 

In order to detect when deadlock has occurred in a queue-

ng network simulation, a state digraph is used, a form of wait-

or graph. In previous literature on wait-for graphs these are be-

poke graphs that represent system states, where edges denote

ome form of waiting or blockage relationships. Here we present

 generic state digraph that is defined for all FIFO queueing net-

orks that exhibit Type I blocking: 

efinition 2. The state digraph D ( t ) of a queueing network is de-

ned by that network’s state at any time t . Vertices of the state

igraph correspond to servers of the network. A directed edge de-

otes a blockage relationship in the following manner: if a cus-

omer at the k th server of node i is blocked from entering node

 , then there are directed edges from the vertex corresponding to

ode i ’s k th server to every vertex corresponding to the servers of

ode j . 

To illustrate this concept Fig. 3 shows examples of queueing

etworks in and out of deadlock, and the corresponding state di-

raph in each case. 

These graph theoretic terms will be used throughout this paper

 Bang-Jensen & Gutin, 2008; Gibbons, 1985; Wilson, 1970 ): 

• Two vertices v 1 and v 2 are said to be weakly connected if there

is a directed path from v 1 to v 2 or a directed path from v 2 to

v 1 . 
• Two vertices v 1 and v 2 are said to be strongly connected if there

is a directed path from v 1 to v 2 and a directed path from v 2 to

v 1 . Note that strongly connected vertices are also weakly con-

nected. 
• A weakly connected component of a digraph is a subgraph in-

duced by a maximal subset of weakly connected vertices. 
• A strongly connected component of a digraph is a subgraph in-

duced by a maximal subset of strongly connected vertices. 
• The out-degree of v is the number of out-edges incident to v . 
1 1 
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Fig. 3. Examples of state digraphs with their corresponding queueing networks. 

Fig. 4. State digraph of the counter-example. 
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• A sink is a vertex whose out-degree is zero. 
• A knot , or terminal strong component, is a strongly connected

component containing no vertices with a path to any vertices

outside that component. 

Consider a vertex v in D ( t ). Some observations: 

• If the server corresponding to v is unoccupied, then v has no

incident edges. 
• It can be interpreted that all vertices with a path to v corre-

spond to servers whose individuals are being blocked directly

or indirectly by the customer at the server corresponding to v . 
• Similarly it can be interpreted that all vertices that v has a path

to correspond to servers whose occupants are directly or indi-

rectly blocking the customer at the server corresponding to v . 
• It is clear that if all vertices that v has a path to correspond to

servers occupied by blocked individuals, then the system is in

deadlock at time t . 

The following results are used detect deadlock for open re-

stricted queueing networks. 

Theorem 1. A deadlocked state arises at time t if and only if D ( t )

contains a knot. 
roof. Consider a queueing network with set of servers S . Con-

ider the state digraph D (t) = ( V, E(t) ) . Note that there is a 1–

 pairing between the elements of S and the elements of V , by

efinition 2 of D ( t ). 

• Assume the system is in deadlock at time t . By Definition 1 (of

deadlock) there exists S ⊆ S a subset of servers with blocked

customers blocked only by customers at servers in S . Consider

V ⊆ V corresponding to S . 

For each s ∈ S the corresponding v ∈ V has at least one

out-edge in E ( t ) because the customer at s is blocked (by

Definition 2 ). 

By Definition 1 every v ∈ V has at least one path in E ( t ) to a

vertex in V, and has no path in E ( t ) to any vertex outside of V . 

By definition of a knot, there exists G = ( V, E ) , where E ⊆ E(t) ,

such that G is either a knot or a collection of knots. 
• Assume that D ( t ) contains a knot G = ( V, E ) . Consider S ⊆ S cor-

responding to V . 

As G is a knot, every v ∈ V has an out-edge, thus every cus-

tomer at s ∈ S is blocked (by Definition 2 ). 

As G is a knot, there is no path in E ( t ) from any v ∈ V to

any vertex outside of V . Therefore every customer at s ∈ S is

blocked directly or indirectly by customers at servers in S . 

By Definition 1 this implies the system is in deadlock at time t .

�

The knot condition can be simplified for specific cases.

heorem 2 may offer computational advantages in cases where it

s easier to identify weakly connected components to knots. 

heorem 2. For queueing networks: 

1. with one node 

2. with two nodes, each with two or fewer parallel servers 

3. with a finite amount of nodes, each with a single-server 

 deadlocked state arises at time t if and only if D ( t ) contains a

eakly connected component without a sink. 

roof. To prove the result in one direction, each case is considered

eparately: 
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Fig. 5. An open one node multi-server restricted queueing network. 

Fig. 6. Diagrammatic representation of the Markov chain for a multi-server one node system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Consider a one node queueing network. 

If there is deadlock, then all servers are occupied by blocked

individuals, and so all vertices corresponding to those servers

have an out-edge. Thus there are no sinks. 

2. Consider a two node queueing network, each node with 2 or

fewer parallel servers. 

If both nodes are involved in the deadlock, so there is at least

one customer in node 1 blocked from entering node 2, and at

least one customer from node 2 blocked from entering node

1, then all servers in node 1 and node 2 in D ( t ) will have out

edges as they are occupied by a blocked individual. The servers

of node 1 and 2 consist of the entirety of D ( t ), and so there is
no sink nodes.  

 

Now consider the case when only one node is involved in the

deadlock. Without loss of generality, consider that node 1 is in

deadlock with itself, then the servers of node 1 have out-edges.

For the servers of node 2 to be part of that weakly connected

component, there either needs to be an edge from a server in

node 1 to a server in node 2, or an edge from a server in node

2 to a server in node 1. An edge from a server in node 1 to a

server in node 2 implies that a customer from node 1 is blocked

from entering node 2, and so node 1 is not in deadlock with it-

self. An edge from a server in node 2 to a server in node 1 im-

plies that a customer in node 2 is blocked from entering node

1. In this case one server in node 2 has an out-edge. Now ei-

ther the other server of node 2 is empty or still in service, and

so is not part of that weakly connected component, or the other
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Fig. 7. Time to deadlock in the multi-server one node system, analytical and simulation results (10,0 0 0 repetitions). 
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server’s customer is blocked and so has an out edge. Thus there

are no sinks. 

3. Consider a queueing network with N nodes, each with a single-

server. 

If 1 ≤ n ≤ N nodes are involved in the deadlock, then each server

in those n nodes has a blocked customer, and so the corre-

sponding vertex in the state digraph has an out-edge. 

Of the nodes not involved in that deadlock, the vertices corre-

sponding to their servers can only be in the same weakly con-

nected component if: 
• They contain a blocked individual that is blocked to the

nodes involved in the deadlock. 
• Individuals in the deadlocked nodes are blocked to those

nodes not involved in the deadlock. 
In the first case, the vertices corresponding to the servers in

those nodes will all have an out-edge. In the second case it is

implied that the customers at servers in deadlocked nodes are

blocked to both a node in deadlock and a node not in deadlock,

which is not possible (customers can only be blocked to one

location at a time). 

Thus there are no sinks. 

Proving the result in the other direction is equivalent to prov-

ng that a weakly connected component without a sink contains a

not: 

• Consider a weakly connected component, G , of D ( t ). 
• Assume G contains no knots. By definition of a knot, this im-

plies: 
• G contains a sink; or 
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Fig. 8. An open two node multi-server restricted queueing network. 

Fig. 9. Diagrammatic representation of the Markov chain for a multi-server two node system without self-loops with n 1 = 1 , n 2 = c 1 = c 2 = 2 . The deadlock state is (5, 6). 
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• G contains a vertex with a path to another vertex outside of

G (contradicting the fact that G is a weakly connected com-

ponent). 

Thus the existence of a weakly connected component without

 sink in D ( t ) implies that there is a knot in D ( t ), and the result

ollows by applying Theorem 1 . �

In the general case using the result of Theorem 2 is not suf-

cient to detect deadlock. In order to illustrate this, consider the
ollowing counter-example of a two node queueing network, where

ode A has two servers, node B has three servers. Beginning with

ll servers occupied by customers in service and full queues. The

ustomer at server A 1 becomes blocked to node A . The customer

t server B 1 becomes blocked to node A . The customer at server

 2 becomes blocked to node B . The customer at server A 2 becomes

locked to node A . Node A is now in deadlock. The resulting state
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Fig. 10. Time to deadlock in the multi-server two node system without self loops, analytical and simulation results (10,0 0 0 repetitions). 
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digraph, shown in Fig. 4 , has a weakly connected component with

a sink. 

For the purposes of this paper, a simulation model is used to

verify that the results of this section and the analytical model in

Section 5 are in agreement. Specifically the time taken to reach

deadlock from an empty system is investigated, and the simula-

tion model gives information on the distribution of the times to

deadlock. The model is built using Ciw ( The Ciw library develop-

ers, 2017 ). This is an object oriented framework in Python ( The

Python Software Foundation, 2015 ), with care taken to ensure re-

producibility of the results ( Hong, Crick, Gent, & Kotthoff, 2015 ). 

The digraph D ( t ) is implemented as an attribute of the queue-

ing network and is updated at the appropriate events. Note that

a brute force algorithm is used to check whether any strongly
onnected component of D ( t ) is a knot in order to implement

heorem 1 . More efficient algorithms could be used for other spe-

ific use cases. 

In the next section Markov models of three queueing networks

re built, and their deadlock properties discussed. 

. Markovian models of deadlocking queueing networks 

The following three networks describe all possible configura-

ions of deadlocking queueing networks with two or fewer nodes: 

1. Open one node, multi-server restricted queueing network with

feedback loop ( Section 5.1 ). 

2. Open two node, multi-server restricted queueing network with

routes between nodes ( Section 5.2 ). 
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Fig. 11. An open two node single-server restricted queueing network. 

Fig. 12. Diagrammatic representation of the Markov chain for single server two node system with n 1 = 1 and n 2 = 2 . 
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3. Open two node, multi-server restricted queueing network with

routes between nodes and self-loops. 

In this section Markov models are built for networks 1 and 2,

nd their expected time to deadlock found. The state space for net-

ork 3 is too large to model in a similar way to the others, and so

sn’t considered in this paper. A single server version is modelled

owever ( Section 5.3 ), and the multi-server system is briefly dis-

ussed in Section 6 . 

In general a continuous Markov chain model of a deadlocking

ueueing network is defined by a set of states S and the tran-

ition rates between these states q s ,s . Each state s ∈ S uniquely

1 2 
efines a configuration of customers around the queueing network.

eadlock states are also present, either denoted by that specific

onfiguration of customers, or by negative numbers, for example

(−1) . Deadlocked states cannot transition to any other state, and

o are absorbing states of the Markov chain. Therefore any queue-

ng network that can experience deadlock is guaranteed to experi-

nce deadlock, as absorbing Markov chains are guaranteed to enter

ne of its absorbing states. 

The expected time until deadlock is reached is equivalent to the

xpected time to absorption of the Markov chain, which can be

ound using classic results ( Stewart, 2009 ). The continuous Markov
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Fig. 13. Time to deadlock in the single-server two node system, analytical and simulation results (10,0 0 0 repetitions). 
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chain is converted to a discrete time absorbing Markov chain with

canonical form: 

P = 

(
T U 

0 I 

)

where I is the identity matrix. Now the expected number of time

steps until absorption starting from the i th state is the i th element

of the vector 

(I − T ) −1 e (5.1)

where e is a vector of 1s. 

Therefore by discretising the continuous Markov chain and en-

suring the correct order of states, the expected number of time

steps to absorption, which corresponds to deadlock, can be found.
his can be converted back to continuous time by multiplying by

he time step used in the discretisation process. 

When there is more than one deadlock state, there is more than

ne absorbing state in the Markov chain. Here the expected time

o absorption is the expected time to a deadlock state, whichever

ne that may be. 

.1. One node multi-server 

Consider the open one node multi-server restricted queueing

etwork shown in Fig. 5 . This shows an M / M / c / n queue where cus-

omers arrive at a rate of � and served at a rate μ. Once a cus-

omer has finished service they rejoin the queue with probability

 , and so exit the system with probability 1 − r . 
11 11 
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The state space is given by: 

 = { i ∈ N | 0 ≤ i ≤ n + 2 c} 
here i denotes the number of individuals in the system plus the

umber of individuals who are blocked. For example, i = n + c + 2

enotes a full system, n + c individuals in the node, and 2 of those

ndividuals are also blocked. The state i = n + 2 c denotes the dead-

ock state, that is every customer with a server is blocked. 

Define δ = i 2 − i 1 for all i k ∈ S . The transitions are given by Eqs.

5.2) and ( 5.3 ). 

 i 1 ,i 2 = 

{ 

� if δ = 1 

(1 − r 11 ) μmin (i, c) if δ = −1 

0 otherwise 

} 

if i 1 < n + c (5.2) 

 i 1 ,i 2 = 

{ 

(c − b) r 11 μ if δ = 1 

(1 − r 11 )(b − k ) μ if δ = −b − 1 

0 otherwise 

} 

if i 1 = n + c + b ∀ 0 ≤ b ≤ c (5.3) 

here b denotes the number of blocked customers. The Markov

hain is shown in Fig. 6 . 

Fig. 7 shows the effect of varying the parameters of the above

arkov model. Base parameters of � = 6 , n = 3 , μ = 2 , r 11 = 0 . 5

nd c = 2 were used. It can be seen that increasing the arrival

ate � and the routing probability r 11 results in reaching deadlock

aster. This is intuitive as increasing these parameters results in the

ueue filling up quicker. Increasing the queueing capacity n results

n reaching deadlock slower. Again this is intuitive, as increasing

he queueing capacity allows more customers in the system before

eaching deadlock. 

Increasing the amount of servers has a similar effect to in-

reasing the queueing capacity, as there are now more transient

tates to go through before reaching the deadlock state. Varying

he amount of servers has a greater effect on the time to dead-

ock however, as any state in which customers are blocked, i ∈
 n + c + 1 , n + 2 c] , can jump back to state i = n + c − 1 simply with

 service where the customer does not rejoin the queue. Increasing

he amount of servers also increases the rate at which customer

eave the system, but not the rate at which customers enter the

ystem. This means that the rate of increase of the number of cus-

omers in the system increases, however the rate of decrease of the

umber of customers in the system does not change, thus it would

ake longer to reach a full system, a requirement of deadlock. 

The behaviour as the service rate μ varies is not monotonic, as

he service rate contributes towards both moving customers from

he system and allowing customers to rejoin the queue, causing

lockages and deadlock. If the function ω( μ) describes the ex-

ected time to deadlock of this system as the service rate μ varies,

nd all other parameters are fixed, then it is observed that ω( μ)

as one critical point and is a local minimum for μ∈ (0, ∞ ). 

The observed bowl shaped curve can be explained by consider-

ng the effect of varying the service rate. At lim μ→ 0 ω( μ) there is

nfinite service time, and so there is infinite time until deadlock. At

im μ→ ∞ 

ω( μ) there is zero service time, the queue can never form,

nd so there is infinite time to deadlock. At low service rates, be-

ow a certain threshold ˆ μ, the arrival rate is relatively large com-

ared to the service rate, a saturated system can be assumed. At

his point services in which a customer exits the system do not

ave much of an effect on the system state, another immediate

rrival can be assumed. However services in which a customer

ishes to rejoin the queue results in a blockage as the system is

aturated. Therefore, increasing the service rate here increases the

hance of a blockage, and so the chance of deadlock. Above ˆ μ the

ervice rate is large enough that a saturated system cannot be as-

umed, and so services in which the customer exits the system do
ave an affect on the number of customers in the system. Thus in-

reasing the service rate increases the rate at which customers are

emoved from the system, and so there is less chance of reaching

eadlock. 

.2. Two node multi-server without self-loops 

Consider the open two node multi-server restricted queueing

etwork shown in Fig. 8 . This shows two M / M / c i / n i queues, with

ervice rates μi and external arrival rates �i . All routing proba-

ilities r ij may be positive apart from self-loops r ii , for each node

 . Note that this system is equivalent to the one described in

ection 2 . 

The state space is given by: 

 = { (i, j) ∈ N 

2 | i ≤ n 1 + c 1 + j, j ≤ n 2 + c 2 + i } 
here i denotes the number of individuals at node 1 plus the

umber of individuals blocked waiting to enter node 1, and j de-

otes the number of individuals at node 2 plus the number of in-

ividuals blocked waiting to enter node 2. For example, (i, j) =
(n 1 + c 1 + 2 , n 2 + c 2 + 1) denotes a full system, n 1 + c 1 individu-

ls at node 1, two of whom are blocked waiting to enter node 2;

 2 + c 2 individuals at node 2, one of whom is blocked waiting to

nter node 1. The state (i, j) = (n 1 + c 1 + c 2 , n 2 + c 2 + c 1 ) denotes

he deadlock state. The Markov chain is shown in Fig. 9 . 

Define δ = (i 2 , j 2 ) − (i 1 , j 1 ) , b 1 = max (0 , i 1 − n 1 − c 1 ) , b 2 =
ax (0 , i 2 − n 2 − c 2 ) , s 1 = min (i 1 , c 1 ) − b 2 and s 2 = min (i 2 , c 2 ) − b 1 

or all ( i k , j k ) ∈ S . Then the transitions q (i 1 , j 1 ) , (i 2 , j 2 ) 
are given in

able 1 . 

The values b 1 and b 2 correspond to the number of customers

locked to node 1 and node 2, respectively. The values s 1 and

 2 correspond to the amount of customers currently in service at

ode 1 and node 2, respectively. 

Fig. 10 shows the effect of varying the parameters of the above

arkov model. Base parameters of �1 = 9 , �2 = 7 . 5 , n 1 = 2 , n 2 =
 , μ1 = 5 . 5 , μ2 = 6 . 5 , r 12 = 0 . 7 , r 21 = 0 . 6 , c 1 = 2 and c 2 = 2 were

sed. Only plots for the parameters corresponding to node 1 are

hown, node 2 shows similar behaviour. Similar behaviour is ob-

erved to that seen in Fig, 7 . 

.3. Two node single-server with self-loops 

Consider the open two node single-server restricted queueing

etwork shown in Fig. 11 . This shows two M / M /1/ n i queues with

ervice rates μi and external arrival rates �i . All routes are possi-

le, where the routing probability from node i to node j is denoted

y r ij . 

The state space is given by: 

 = { (i, j) ∈ N 

2 | 0 ≤ i + j ≤ n 1 + n 2 + 2 } ∪ { (−1) , (−2) , (−3) } 
here i denotes the number of individuals: 

• In service or waiting at the first node. 
• Occupying a server but having finished service at the second

node and waiting to join the first. 

here j denotes the number of individuals: 

• In service or waiting at the second node. 
• Occupying a server but having finished service at the first node

and waiting to join the second. 

nd the state (−3) denotes the deadlock state caused by both

odes; (−1) denotes the deadlock state caused by the first node

nly; and (−2) denotes the deadlock state caused by the second

ode only. 
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Table 1 

Table of transitions q (i 1 , j 1 ) , (i 2 , j 2 ) for a multi-server two node network. 

j 1 < n 2 + c 2 j 1 = n 2 + c 2 j 1 > n 2 + c 2 

i 1 < n 1 + c 1 �1 if δ = (1 , 0) 

�2 if δ = (0 , 1) �1 if δ = (1 , 0) �1 if δ = (1 , 0) 

r 12 s 1 μ1 if δ = (−1 , 1) r 12 s 1 μ1 if δ = (0 , 1) r 12 s 1 μ1 if δ = (0 , 1) 

r 21 s 2 μ2 if δ = (1 , −1) r 21 s 2 μ2 if δ = (1 , −1) r 21 s 2 μ2 if δ = (0 , −1) 

(1 − r 12 ) s 1 μ1 if δ = (−1 , 0) (1 − r 12 ) s 1 μ1 if δ = (−1 , 0) (1 − r 12 ) s 1 μ1 if δ = (−1 , 0) 

(1 − r 21 ) s 2 μ2 if δ = (0 , −1) (1 − r 21 ) s 2 μ2 if δ = (0 , −1) (1 − r 21 ) s 2 μ2 if δ = (−1 , −1) 

i 1 = n 1 + c 1 �2 if δ = (0 , 1) 

r 12 s 1 μ1 if δ = (−1 , 1) r 12 s 1 μ1 if δ = (0 , 1) r 12 s 1 μ1 if δ = (0 , 1) 

r 21 s 2 μ2 if δ = (1 , 0) r 21 s 2 μ2 if δ = (1 , 0) r 21 s 2 μ2 if δ = (1 , 0) 

(1 − r 12 ) s 1 μ1 if δ = (−1 , 0) (1 − r 12 ) s 1 μ1 if δ = (−1 , 0) (1 − r 12 ) s 1 μ1 if δ = (−1 , 0) 

(1 − r 21 ) s 2 μ2 if δ = (0 , −1) (1 − r 21 ) s 2 μ2 if δ = (0 , −1) (1 − r 21 ) s 2 μ2 if δ = (−1 , −1) 

i 1 > n 1 + c 1 �2 if δ = (0 , 1) 

r 12 s 1 μ1 if δ = (−1 , 0) r 12 s 1 μ1 if δ = (0 , 1) r 12 s 1 μ1 if δ = (0 , 1) 

r 21 s 2 μ2 if δ = (1 , 0) r 21 s 2 μ2 if δ = (1 , 0) r 21 s 2 μ2 if δ = (1 , 0) 

(1 − r 12 ) s 1 μ1 if δ = (−1 , −1) (1 − r 12 ) s 1 μ1 if δ = (−1 , −1) (1 − r 12 ) s 1 μ1 if δ = (− min (b 1 + 1 , b 2 + 1) , − min (b 1 , b 2 + 1)) 

(1 − r 21 ) s 2 μ2 if δ = (0 , −1) (1 − r 21 ) s 2 μ2 if δ = (0 , −1) (1 − r 21 ) s 2 μ2 if δ = (− min (b 1 + 1 , b 2 ) , − min (b 1 + 1 , b 2 + 1)) 
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Define δ = (i 2 , j 2 ) − (i 1 , j 1 ) for all ( i k , j k ) ∈ S . The transitions are

given by Eqs. (5.4) –( 5.7 ). 

q (i 1 , j 1 ) , (i 2 , j 2 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�1 if i 1 < n 1 +
0 otherw

�2 if j 1 < n 2 +
0 otherw

(1 − r 11 − r 12 ) μ1 if j 1 < n 2 +
0 otherw

(1 − r 21 − r 22 ) μ2 if i 1 < n 1 +
0 otherw

r 12 μ1 if j 1 < n 2 + 2 and (i 1 , j 1 ) 
 = (n 1 + 2 , n
0 otherw

r 21 μ2 if i 1 < n 1 + 2 and (i 1 , j 1 ) 
 = (n 1 , n 2 +
0 otherw

q (i 1 , j 1 ) , (−1) = 

{
r 11 μ1 if i > n 1 and j < n 2 + 2 

0 otherwise 
(5.5)

q (i 1 , j 1 ) , (−2) = 

{
r 22 μ2 if j > n 2 and i < n 1 + 2 

0 otherwise 
(5.6)

q (i 1 , j 1 ) , (−3) = 

{ 

r 21 μ2 if (i, j) = (n 1 , n 2 + 2) 
r 12 μ1 if (i, j) = (n 1 + 2 , n 2 ) 

0 otherwise 
(5.7)

q −1 ,s = 0 (5.8)

q −2 ,s = 0 (5.9)

q −3 ,s = 0 (5.10)

Note that there are now three different deadlock states, thus

two more ways to reach deadlock, Eqs. (5.5) and (5.6) . 

For n 1 = 1 and n 2 = 2 , the resulting Markov chain is shown in

Fig. 12 . 

Fig. 13 shows the effect on the time to deadlock of varying the

parameters of the above Markov model. Base parameters of �1 =
4 , �2 = 5 , n 1 = 3 , n 2 = 2 , μ1 = 10 , μ2 = 8 , r 11 = 0 . 1 , r 12 = 0 . 25 ,

r 21 = 0 . 15 and r 22 = 0 . 1 are used. 

In general, similar behaviour is observed to that seen in

Figs. 7 and 10 . A notable difference however is that the increase or

decrease in the time to deadlock flattens as the parameter in ques-

tion increases or decreases. This is observable in Fig. 13 (e). This is
if δ = (1 , 0) 

if δ = (0 , 1) 

if δ = (−1 , 0) 

if δ = (0 , −1) 

if δ = (−1 , 1) 

if δ = (1 , −1) 

0 otherwise 

(5.4)

xplained by the existence of more than one deadlock state for this

ystem. Deadlock state (−1) involves node 1 only, deadlock state

(−2) involves node 2 only, while deadlock state (−3) involves both

odes. Therefore if a parameter at node 1 is increased or decreased

uch that the time to a deadlock involving node 1, states (−1) and

(−3) , approaches infinity, then the overall time to deadlock of the

ystem will become unchanging, as varying that parameter will not

ffect the time to deadlock state (−2) . 

. Conclusions 

This paper has explored deadlock in open restricted queueing

etworks. It has been shown that analysing a queueing network’s

orresponding state digraph is sufficient to detect when deadlock

ccurs in queueing networks. In general the presence of a knot in

he state digraph will highlight that deadlock has occurred in the

etwork, however for special cases the presence of a weakly con-

ected component with no sink is sufficient. Incorporating this into

 simulation model, time to deadlock can be observed. 

Markov models of three deadlocking queueing networks have

een built. Using linear algebraic techniques the expected time to

eadlock from each state was found, and its behaviour as system

arameters are varied was explored. These analytical results were

ompared with results obtained from the simulation model. 

Further research is needed to build a Markov model of the

pen two node, multi-server restricted queueing network with

outes between nodes and feedback loops, that is network 3 from

ection 5 . In networks 1 and 2 customers only have one poten-

ial destination, and so customers may only get blocked from mov-

ng to one destination. In network 3 with single servers, although
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ustomers have two destinations, a blockage to the same node im-

ediately results in deadlock. In all these cases, the unblocking

echanism is simple, as there is only ever one option of which

ode a customer joins when unblocked. However in network 3

ith multiple servers, there are two destination nodes to which a

ustomer may join when unblocked. Therefore, any representations

f any states with blocked customers also need to hold information

bout these customers’ destination nodes. 

In addition to this, the order in which customers become

locked is important. In networks 1 and 2 when space become

vailable at a node there is only one other node from which a

locked customer can become unblocked, however in network 3

 node that has space available must accept the customer that

as been blocked longest to that node. Therefore all states with

locked customers are also required to record the order in which

he customers become blocked. Combining the two requirements

bove, it is clear that as the number of servers increases, the size

f the state space for this queueing network quickly grows combi-

atorially. Therefore it is not possible to consider this state space

n the same way as for networks 1 and 2. 

For the Markov models built in this paper Poisson arrivals and

xponential service rates are assumed, and only blocking of Type I

s considered. A future research direction could be to model other

ervice and arrival distributions using phase-type distributions, and

ncorporating these into the Markov models of deadlocking queue-

ng networks. Blocking of Type II and III should also be considered,

oth in the analytical models and whether the deadlock detection

ethod presented here still holds. Systems under Type III block-

ng with random destination will not reach deadlock, as there is

 non-zero probability of a blocked customer leaving the system.

his type of blocking may be considered a deadlock prevention

echanism. 
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